Exponential Lyapunov Stability Analysis of a Drilling Mechanism
نویسندگان
چکیده
This article deals with the stability analysis of a drilling system which is modelled as a coupled ordinary differential equation / string equation. The string is damped at the two boundaries but leading to a stable open-loop system. The aim is to derive a linear matrix inequality ensuring the exponential stability with a guaranteed decay-rate of this interconnected system. A strictly proper dynamic controller based on boundary measurements is proposed to accelerate the system dynamics and its effects are investigated through the stability theorem and simulations. It results in an efficient finite dimension controller which subsequently improves the system performances.
منابع مشابه
Fuzzy Lyapunov stability and exponential stability in control systems
Fuzzy control systems have had various applications in a wide range of science and engineering in recent years. Since an unstable control system is typically useless and potentially dangerous, stability is the most important requirement for any control system (including fuzzy control system). Conceptually, there are two types of stability for control systems: Lyapunov stability (a special case ...
متن کاملNew Approach to Exponential Stability Analysis and Stabilization for Delayed T-S Fuzzy Markovian Jump Systems
This paper is concerned with delay-dependent exponential stability analysis and stabilization for continuous-time T-S fuzzy Markovian jump systems with mode-dependent time-varying delay. By constructing a novel Lyapunov-Krasovskii functional and utilizing some advanced techniques, less conservative conditions are presented to guarantee the closed-loop system is mean-square exponentially stable....
متن کاملConstruction of strict Lyapunov function for nonlinear parameterised perturbed systems
In this paper, global uniform exponential stability of perturbed dynamical systems is studied by using Lyapunov techniques. The system presents a perturbation term which is bounded by an integrable function with the assumption that the nominal system is globally uniformly exponentially stable. Some examples in dimensional two are given to illustrate the applicability of the main results.
متن کاملStability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کاملExtension of Higher Order Derivatives of Lyapunov Functions in Stability Analysis of Nonlinear Systems
The Lyapunov stability method is the most popular and applicable stability analysis tool of nonlinear dynamic systems. However, there are some bottlenecks in the Lyapunov method, such as need for negative definiteness of the Lyapunov function derivative in the direction of the system’s solutions. In this paper, we develop a new theorem to dispense the need for negative definite-ness of Lyapunov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018